
Automatic task-based
parallelization of
Python codes

MS12: Task-based Programming for Scientific
Computing: Runtime Support

Cristián Ramón-Cortés
Ramon Amela
Jorge Ejarque
Philippe Clauss
Rosa M. Badia

Outline

 Introduction
● PLUTO
● PyCOMPSs

 AutoParallel
● Annotation
● Architecture

 Evaluation

 Conclusions and Future Work

Introduction

Motivation

THE GOAL:

Any field expert can scale up an
application to hundreds of cores

Parallel
Issues Execution orchestration

Identifying parallel regions

Concurrency management Distributed
Issues

Remote execution

Data transfers

Ease the development of
distributed applications

4

▶ Based on sequential programming
● General purpose programming language + annotations

▶ Task-based programming model
● Task is the unit of work
● Implicit Workflow: Builds a task graph at runtime that expresses

potential concurrency

COMPSs

5

▶ Infrastructure agnostic
● Same application runs on clusters, grids, clouds and containers

COMPSs

6

▶ Supports other types of parallelism
● Multi-threaded tasks (i.e., MKL kernels)
● Multi-node tasks (i.e., MPI applications)
● Non-native tasks (i.e., binaries)
● Nested PyCOMPSs applications
● Integration with BSC OmpSs

 Python decorators for task selection + synchronization API
 Instance and class methods
 Task data directions

PyCOMPSs Annotation

@task(a=IN, b=IN, c=INOUT)
def multiply_acum(a, b, c):
 c += a * b

7

@task(returns=dict)
def wordcount(block):
 ...

@task(result=INOUT)
def reduce(result, pres):
 ...

def main(a, b, c):
 for block in data:
 pres = wordcount(block)
 reduce(result, pres)
 result = compss_wait_on(result)

 # f = compss_open(fn)
 # compss_delete_file(f)
 # compss_delete_object(o)
 # compss_barrier()

@task(returns=int)
def multiply(a, b, c):
 return c + a * b

@constraint(computingUnits=”2”)
@task(file=FILE_IN)
def my_task(x):
 ...

@binary(binary=”sed”)
@task(f=FILE_INOUT)
def binary_task(flag, expr, f):
 pass

▶ The Polyhedral Model represents the instances of the loop
nests’ statements as integer points inside a polyhedron

▶ PLUTO is an automatic parallelization tool based on the
Polyhedral Model to optimize arbitrarily nested loop
sequences with affine dependencies

PLUTO

8

AutoParallel

AutoParallel

A single Python decorator to parallelize and distributedly execute
sequential code containing affine loop nests

from pycompss.api.parallel import parallel

@parallel()
def matmul(a, b, c, m_size):
 for i in range(m_size):
 for j in range(m_size):
 for k in range(m_size):
 c[i][j] += np.dot(a[i][k], b[k][j])

Grid Cluster Cloud Container

tasktasktask
tasktasktask

tasktasktask
tasktasktask

Python decoratorPython decorator

Sequential codeSequential code

Automatic
taskification
Automatic

taskification

No data
management

No data
management

No resource
management
No resource
management

10

AutoParallel Annotation
▶ Taskification of affine loop nests at runtime
@parallel()
def matmul(a, b, c, m_size):
 for i in range(m_size):
 for j in range(m_size):
 for k in range(m_size):
 c[i][j] += np.dot(a[i][k], b[k][j])

11

[COMPSs AutoParallel] Begin Autogenerated code
@task(var2=IN, var3=IN, var1=INOUT)
def S1(var2, var3, var1):
 var1 += np.dot(var2, var3)

def matmul(a, b, c, m):
 if m >= 1:
 for t1 in range(0, m – 1): #i
 lbp = 0
 ubp = m - 1
 for t2 in range(lbp, ubp + 1): #k
 lbv = 0
 ubv = m - 1
 for t3 in range(lbv, ubv + 1): #j
 S1(a[t1][t2], b[t2][t3], c[t1][t3])
 compss_barrier()
[COMPSs AutoParallel] End Autogenerated code

AutoParallel Architecture
▶ Decorator

● Implements the @parallel decorator
▶ Python to OpenScop translator

● Builds a Python Scop object from the
Python’s AST representing each affine
loop nest detected in the user function

▶ Parallelizer
● Parallelizes an OpenScop file and returns

its Python code using OpenMP syntax
▶ Python to PyCOMPSs translator

● Inserts the PyCOMPSs syntax (task
annotations and data synchronizations)
to the annotated Python code (uses
Python’s AST)

▶ Code replacer
● Replaces each loop nest in the initial user

code by the auto-generated code

12

Evaluation

Cholesky
Code Analysis

LoC CC NPath

User 220 26 112

Auto 274 36 14.576

LoC Lines Of Code
CC Cyclomatic Complexity
NPath Npath Complexity

Problem Size Execution

Total Matrix
Size

#Blocks Block Size Task
Types

#Tasks SpeedUp
@ 192 cores

User
65.536 x 65.536 32 x 32 2048 x 2048

3 6.512 1,95

Auto 4 7.008 2,04

Loop Analysis

#Main #Total Depth

User 1 4 3

Auto 3 9 3

14

LU
LoC Lines Of Code
CC Cyclomatic Complexity
NPath Npath Complexity

Code Analysis

LoC CC NPath

User 238 35 79.872

Auto 320 39 331.776

Problem Size Execution

Total Matrix
Size

#Blocks Block Size Task
Types

#Tasks SpeedUp
@ 192 cores

User
49.152 x 49.152 24 x 24 2048 x 2048

4 14.676 2,45

Auto 12 15.227 2,13

Loop Analysis

#Main #Total Depth

User 2 6 3

Auto 2 6 3

15

LU▶ In-depth performance analysis
● Paraver trace with 4 workers (192 cores)

UserParallel

AutoParallel

16

QR
LoC Lines Of Code
CC Cyclomatic Complexity
NPath Npath Complexity

Code Analysis

LoC CC NPath

User 303 41 168

Auto 406 43 344

Problem Size Execution

Total Matrix
Size

#Blocks Block Size Task
Types

#Tasks SpeedUp
@ 192 cores

User
32.768 x 32.768 16 x 16 2048 x 2048

4 19.984 2,37

Auto 20 26.304 2,10

Loop Analysis

#Main #Total Depth

User 1 6 3

Auto 2 7 3

17

Conclusions
and

Future Work

▶ AutoParallel goes one step further in easing the
development of distributed applications
● It is a Python module to automatically parallelize affine loop

nests and execute them in distributed infrastructures
● The evaluation shows that the automatically generated codes

for the Cholesky, LU, and QR applications can achieve the same
performance than the manually parallelized versions

▶ Next steps
● Loop taskification: An automatic way to create blocks from

sequential applications based on loop tiles. Requires:
─ Research on how to simplify the chunk accesses from the AutoParallel

module
─ Extend PyCOMPSs to support collection objects (e.g., lists)

● Integration with different tools similar to PLUTO to support a
larger scop of loop nests (e.g., APOLLO)

Conclusions and Future Work

1919

Thank you

cristian.ramon-cortes@bsc.es

cristianrcv/pycompss-autoparallel

http://compss.bsc.es/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

